Проект " метеостанция в домашних условиях". Очередной умный дом, в нескольких частях

Здравствуйте уважаемые друзья сайта "Радиосхемы "! Ещё давно хотел собрать домашнюю метеостанцию , изначально планировалось сделать автономную конструкцию с ЖК индикатором и т.д., но когда руки уже почти потянулись к текстолиту, у меня произошла ситуация, верней в одной из компаний в которой я тружусь, а именно, в серверной комнате сломался кондиционер. Последствия могли бы быть очень печальны, если бы мне не понадобилось заехать туда по другим вопросам, но слава богу всё обошлось. После этой ситуации понял, что идея метеостанции требует срочной реализации, только совсем уже в другом виде. Итак, обо всём по порядку. Представляемая конструкция - это USB примочка к ПК, которая передаёт данные с датчиков по средствам UART - USB с интервалом 2 секунды, соответственно, на ПК установлена программа, которая помимо обработки и отображения полученных данных передаёт их, при желании, на WEB сервер, зайдя на который можно отслеживать все показания в режиме реального времени и как вы понимаете, находясь в любой точке мира. Блок передаваемых данных выглядит следующим образом:

  • +data
  • humidity:хх
  • tempepature:хх
  • pressure:ххх
  • -data

Перемычки JP1, JP2, JP3 предназначены для «зануления» определённых значений, то есть при установленной перемычке JP1 значение влажности будет всегда 0, при установленной JP2 значение температуры всегда будет 0 и при JP3 значение давления всегда 0.

Схема самодельной метеостанции

Схема очень проста и по сути состоит из 4 основных компонентов. Это МК, датчик атмосферного давления + температуры, датчик влажности и USB - UART преобразователь.

Сразу скажу, что все компоненты покупал на всем известном электронном аукционе, причём покупал сразу в виде готовых модулей. Поясню почему готовыми модулями, во первых - цена датчика (или микросхемы) отдельно и цена модуля ничем практически не отличается, во вторых - готовый модуль уже имеет всю необходимую обвязку, такую как подтягивающие резисторы, стабилизаторы и прочее, в третьих - это намного упрощает конструкцию, а соответственно и её реализацию. Теперь немного о каждом модуле по отдельности.

Датчик давления и температуры

Потрясающий во всех отношениях датчик атмосферного давления и температуры BMP180.


Несмотря на свои крошечные размеры, этот датчик позволяет выдавать удивительно точные показания, как температуры, так и атмосферного давления. Сам датчик имеет размеры ~3х3 мм, готовый модуль ~10х13 мм, питание датчика 3.3 вольта, поэтому на платке имеется стабилизатор. Интерфейс I2C .

DHT11 является датчиком влажности + температуры, довольно хорош в своей ценовой категории. Но есть небольшой минус, это - точность. Если погрешность по влажности вполне в пределах нормы, то с показаниями температуры всё не так хорошо, но нам и не нужны его данные по температуре т.к. температуру будем брать с BMP180. Штыри на модуле перепаяны на прямые, изначально модуль идёт с угловыми штырьками и к тому же они припаяны с другой стороны.

USB - UART преобразователь

Вообще микросхем и готовых USB - UART преобразователей огромное количество, я остановился на этом. Данный модуль работает на микросхеме FT232RL, а вот изготовитель этой микросхемы далеко не FTDI как заявлено на корпусе этой микросхемы, проще говоря, используемая микросхема - это китайская подделка. Но в этом нет ничего страшного, за исключением того, что компания FTDI решила бороться с подделками очень хитрым способом, они выпустили драйвера, которые затирают ID микросхемы на не оригинальных чипах, после чего подделка перестаёт работать. Для того чтобы этого не случилось - достаточно использовать драйвера НЕ ВЫШЕ версии 2.08.14 и тогда никаких проблем не будет, разницы в работе не оригинала вы не заметите. Если всё же это случилось и устройство перестало правильно определяться в диспетчере устройств, то ничего не потеряно, в любом поисковике вы найдёте решение этой проблемы за 5 минут, на этом я не буду останавливаться.

Для своих целей, мне пришлось немного допилить модуль, перепаяв на нём штырьки, с угловых на прямые, и с прямых на угловые.

Сделать это не повредив ПП достаточно просто, сначала необходимо тонкими кусачками разделить пластиковые втулочки между штырями, после чего выпаять по отдельности каждый штырь вместе с втулкой, затем убрав лишний припой - впаять уже нужные штыри с нужной стороны. Прошивать МК нужно вот с такими фюзами:

После того, как все модули будут допилены и готовы, можно приступать к сборке. Печатная плата в моём варианте имеет итоговый размер 45 х 58 мм, делал фоторезистивным способом, хотя в виду простоты - лут здесь тоже актуален. Все файлы для платы и прошивки скачайте в общем архиве .

Весь набор необходимых компонентов для устройства.

Сборка метеостанции

Сборка прибора заняла пол часа, после чего был уже вполне работоспособный вариант устройства.

Теперь поделюсь своими секретами. После того, как монтаж ПП закончен, я делаю следующее: смываю все остатки флюса и мусора обычным растворителем, после чего купленной для этих целей зубной щеткой очищаю поверхность от волокон, застрявших между точками пайки в результате отмывки, затем перехожу к следующему процессу- покрытие лаком «медной» стороны ПП. Для этого, сначала, в листе бумаги прорезаю окно по размеру ПП, после чего изолентой приклеиваю ПП к этому листу, как показано на рисунке.

Следующий этап - это нанесение лака, для этого использую обычный, автомобильный аэрозольный лак, который используют для тонирования фар и прочего, стоит такой баллон около 150 рублей, продаётся в любом автомагазине. После высыхания получаю вот такой результат.

Всё, все этапы сборки метеостанции закончены, можно отклеивать бумагу.

А вот и готовый, полностью рабочий вариант устройства.

Подытожу касаемо аппаратной части. Стоимость готового устройства, не считая текстолита и расходных материалов, используемых для изготовления и монтажа ПП, составила около 500 рублей.

Программа

Теперь от аппаратной части к программной. Программа состоит из одного исполняемого exe файла. При первом запуске, программа будет пошагово «просить» произвести необходимые настройки, сначала происходит инициализация COM порта, программа выдаст вот такое окно:

Кроме номера порта, в настройках ничего менять не надо! После выбора порта, необходимо нажать кнопку «повторить попытку » в стартовом окне программы. Следующим этапом программа «попросит» произвести «рабочие» настройки.

Здесь указываются оптимальные границы показаний с датчиков, эти значения влияют на графическое отображение значений в основном окне программы, красная стрелка вверх означает завышенное значение, вниз - заниженное и зелёная галочка - в норме соответственно. Что касается оптимальной границы давления, то как таковой её нет, это значение зависит от географических координат вашего города, а верней высоты, на которой расположен ваш город относительно уровня моря, проще всего границы атмосферного давления можно взять из таблицы высот или методом наблюдения.

По желанию можете указать вариант запуска программы (свёрнутый/ не свёрнутый режим). Есть ещё один раздел - это логин, пароль, частота отправки и галочка разрешить отправку данных на WEB сервер. Здесь немного подробней. Эта настройка, при желании, разрешает отправку значений температуры, влажности и давления на глобальный WEB сервер meteolk.ru - это ресурс созданный специально под этот проект, по сути это просто личный кабинет, где содержится вся информация полученная метеостанцией и ничего кроме этого. Для того чтобы можно было пользоваться этим ресурсом необходимо сначала зарегистрироваться для возможности дальнейшей идентификации пользователя, для этого просто заходите на сайт и нажимаете «Регистрация ». Так сказать пользуйтесь на здоровье, мне не жалко. На странице регистрации указываете имя, логин и пароль.

Всё, на этом регистрация закончена, и учётные данные можно указывать в программе. Это можно сделать и позже, перейдя в настройки через «Меню», не обязательно при первом запуске. После того как будут произведены все настройки, нажимаете сохранить и в окне запуска программы нажимаете кнопку «повторить попытку ». Если всё нормально, то программа запуститься и появится основное окно, после этого создадутся файлы настроек и при последующих запусках, никаких настроек производить уже будет не нужно.

В меню «дополнительно » есть опция «считать данные с контроллера », здесь поясню. Каждые пол часа в оперативку микроконтроллера записываются значения температуры, влажности и давления, всего таких записей может быть 100, если получилось так, что программа не была запущена и вам нужно посмотреть статистику, то при помощи этой опции можно посмотреть данные, это 2-е суток, если таковые есть конечно. При помощи «стереть данные МК» вся собранная ранее статистика и хранящаяся в оперативке - затирается. Помимо текущих, отображаемых значений, есть ещё значения «макс.» и «мин.», это максимальные и минимальные значения, которые были зарегистрированы за время работы программы.
С программой всё, на остальных менюшках не буду останавливаться, думаю, что и так всё интуитивно понятно. Вернусь немного к личному кабинету. После регистрации, можно зайти под своей записью, кстати, можно также зайти под логином «test » и паролем «test », это ради ознакомления. Если у вас есть данные, то вы увидите вот такое окно:

При желании, данные можно посмотреть в графическом варианте, в виде графиков.

Вот и всё. Надеюсь на то, что мой проект вам понравиться и пригодится. Пока-пока! До новых встреч на сайте. Автор Виталий Анисимов . г. Калуга .

Обсудить статью ДОМАШНЯЯ USB МЕТЕОСТАНЦИЯ

– Влажность:

Диапазон измерения 20÷90%.

Погрешность ±5%.

Разрешающая способность 1%.

– Температура:

Диапазон измерения 0÷50 о С.

Погрешность ±2 о С.

Разрешающая способность 1 о С.

4. Измерение давления и температуры датчиком BMP-180 .

– Давление:

Диапазон измерения 225÷825 мм рт. ст.

Погрешность ±1 мм рт. ст.

Разрешающая способность 1 мм рт. ст.

– Температура:

Диапазон измерения -40,0÷85,0 о С.

Погрешность ±1 о С.

Разрешающая способность 0,1 о С.

5. Циклическая анимированная смена показаний.

6. Режим "кукушки". Ежечасный короткий звуковой сигнал. Если активирован и только в дневное время.

7. Озвучивание нажатия на кнопки. Короткий звуковой сигнал только в дневное время.

8. Сохранение настроек в энергонезависимой памяти микроконтроллера.

Настройка.

1. Вход в настройки и листание меню производится кнопкой MENU .

2. Переключение параметра для настройки в пределах одной страницы меню кнопкой SET .

3. Установка параметра кнопками PLUS / MINUS . Кнопки работают по одиночному нажатию, а при удержании производится ускоренная установка.

4. Устанавливаемый параметр мигает.

5. Через 10 сек от последнего нажатия на кнопки прибор перейдет в основной режим, настройки запишутся в память.

6. Страницы меню.

CLOC :

– сброс секунд.

– установка минут.

– установка часов.

– установка ежесуточной коррекции точности хода. В старшем разряде символ c . Диапазон установки ±25 сек.

ALAr :

– минуты срабатывания будильника.

– часы срабатывания будильника.

– активация будильника. В старшем разряде символ A . В младших On , если работа будильника разрешена, OF – если запрещена.

– активация режима "кукушки". В старших разрядах символы cu . В младших On , если работа "кукушки" разрешена, OF – если запрещена.

DiSP :

– продолжительность индикации времени. На индикаторе d xx . Диапазон установки

– продолжительность индикации влажности. На индикаторе H xx . Диапазон установки 0 ÷ 99 сек. Если установлен 0, то параметр отображаться не будет.

– продолжительность индикации температуры, измеренной датчиком влажности. На индикаторе tHxx . Диапазон установки 0 ÷ 99 сек. Если установлен 0, то параметр отображаться не будет.

– продолжительность индикации давления. На индикаторе P xx . Диапазон установки 0 ÷ 99 сек. Если установлен 0, то параметр отображаться не будет.

– продолжительность индикации температуры, измеренной датчиком давления. На индикаторе tPxx . Диапазон установки 0 ÷ 99 сек. Если установлен 0, то параметр отображаться не будет.

– скорость анимации. В старшем разряде символ S . Диапазон установки 0 ÷ 99. Чем меньше величина, тем выше скорость.

LiGH :

niGH - установки ночного режима.

– минуты включения ночного режима.

– часы включения ночного режима.

– яркость индикатора в ночном режиме. В старшем разряде символ n . Диапазон установки 0 ÷ 99. Яркость индикатора соответствует ночному режиму.

dAY - установки дневного режима.

– минуты включения дневного режима.

– часы включения дневного режима.

– яркость индикатора в дневном режиме. В старшем разряде символ d . Диапазон установки 0 ÷ 99. Яркость индикатора соответствует дневному режиму.

Работа прибора.

1. В основном режиме происходит циклическая смена информации на индикаторе. Установлена следующая последовательность вывода: время – влажность (в старшем разряде символ H ) – температура измеренная датчиком влажности – давление (в старшем разряде символ P ) – температура измеренная датчиком давления. Если продолжительность отображения какого-либо параметра установлена в 0, то на индикатор он выводиться не будет.

2. Из основного режима можно переключить индикацию кнопками PLUS /MINUS .

3. В случае ошибки считывания данных с датчика DHT11 при индикации температуры и влажности на индикатор выводятся прочерки.

4. Если будильник активирован (см. настройки), при отображении времени в младшем разряде включена точка. В заданное время включается звуковой сигнал - ежесекундные двойные сигналы в течении одной минуты. Звуковой сигнал может быть досрочно отключен нажатием на любую кнопку. При срабатывании будильника на индикатор в течении 30 секунд выводится время.

5. Ежесуточно (в 0 часов 0 минут и 30 сек) производится цифровая коррекция времени. , DS1307 .

4. Тип индикатора (общий анод или катод) выбирается джампером. Если джампер установлен, то выбран индикатор с общим анодом.

5. На схеме показаны два индикатора, устанавливается только одни.

6. Пищалка должна быть со встроенным генератором. В зависимости от ее тока потребления, возможно понадобится установка усилителя (транзисторного ключа).

В ходе обсуждений и доработок в теме форума появилось несколько разных версий этого проекта.

По возможности обновленные материалы будут выкладываться здесь. Краткие описания в архивах

Благодарность studiotandem за подготовку материалов и тестирование прошивок.

Захотелось иметь свою метеостанцию, которая передает показания с датчиков на карту народного мониторинга (ищется в гугле за 5 секунд). Оказалось это не так сложно, как кажется. Рассмотрим, что было сделано.

Для данного действия я взял себе Arduino Uno и Ethernet Shield w5100 для нее. Все это заказывалось из Китая на Aliexpress.

Так же там заказал себе датчики: DHT22, DHT11, DS18B20, BMP280 (в планах еще датчики газа, дыма…)

Покурив форумы, гугл, яндекс, я нашел неплохой вариант скетча — https://student-proger.ru/2014/11/meteostanciya-2-1/

Там же в комментариях человек выкладывал дописанный скетч с датчиками освещенности, газа. Я взял их за основу.

В тех скетчах не было поддержки 280-го датчика давления, пообщались с автором, он заменил 180 на 280. Все заработало прекрасно (спасибо ему за это огромное)

Ниже приведу пример итогового скетча, что получился у меня.

В данный момент у меня подключены датчики:
DHT22 — 1шт.
DHT11 — 1шт.
BMP280 — 1шт.
DS18B20 — 2шт.

ВНИМАНИЕ! Перед тем как заливать скетч, не забудьте изменить MAC-адрес устройства, чтобы не пересекаться с другими (например взять Mac-адрес вашего мобильного телефона и изменить в нем последние буквы/цифры, что не «будоражило» вашу локальную сеть!

Примерная схема подключения (картинка взята на просторах интернета от данного скетча):

По техническим причинам у меня не получается выложить скетч прямо сюда. Поместил его в архив. Ссылка на него строчкой выше.

Как видно, показания есть, идут исправно, для примера выложу пару скриншотов со своих датчиков:

Вам понадобится

  • - Плата Ардуино или аналог;
  • - датчик температуры и влажности DHT11;
  • - датчик давления BMP085;
  • - датчик углекислого газа MQ135;
  • - LCD дисплей 1602;
  • - потенциометр 10 кОм;
  • - корпус для погодной станции;
  • - кусок фольгированного стеклотекстолита;
  • - винты для крепления компонентов;
  • - компьютер;
  • - соединительные провода;
  • - разъём для подачи питания;
  • - паяльник.

Инструкция

Для начала нужно подобрать подходящий корпус. Туда должны вместиться все комплектующие будущей комнатной метеостанции. Такие корпуса продаются во многих магазинах радиоэлектроники. Или воспользуйтесь любым другим корпусом, который сможете найти.
Прикиньте, как все компоненты будут размещаться внутри. Прорежьте окно для закрепления LCD дисплея, если его нет. Если будете размещать внутри датчик углекислого газа, который достаточно сильно греется, то разместите его в противоположной от других датчиков стороне или сделайте его выносным. Предусмотрите отверстие для разъёма питания.

Несколько слов об используемых компонентах.
LCD-дисплей 1602 использует 6 пинов Arduino + 4 на питание (подсветка и знакосинтезатор).
Датчик температуры и влажности DHT11 подключается к любому цифровому пину. Для чтения значений будем использовать библиотеку DHT11.rar, которую можно скачать, например, тут: https://yadi.sk/d/1LiFmQWITGPAY
Датчик давления BMP085 подключается по интерфейсу I2C к двум пинам Arduino: SDA - к аналоговому пину A4 и SCL - к аналоговому пину A5. Обратите внимание, что для питания на датчик подаётся напряжение +3,3 В.
Датчик углекислого газа MQ135 подключается к одному аналоговому пину.
В принципе, для оценки метеообстановки достаточно иметь данные о температуре, влажности и атмосферном давлении, а датчик углекислого газа необязателен.
Но используя все 3 датчика, у нас будут задействованы 7 цифровых и 3 аналоговых пина Ардуино. Ну и питание, естественно.

Схема метеостанции показана на рисунке. Тут всё ясно.

Напишем скетч для Ардуино. Текст программы, ввиду значительного размера, приводится в виде ссылки в приложении к статье в разделе "Источники". Весь код снабжён подробными и понятными комментариями.
Загрузим скетч в память контроллера платы Ардуино.

Сделаем печатную плату для размещения компонентов внутри корпуса - это самое удобное решение для компоновки и подключения сенсоров. Для изготовления печатной платы в домашних условиях я использую "лазерно-утюжную" технологию (мы её подробно описывали в прошлых статьях) и травление с помощью лимонной кислоты. Предусмотрим на плате места для перемычек ("джамперов"), чтобы иметь возможность отключать датчики. Это будет полезно, если будет нужно перепрограммировать микроконтроллер, когда возникнет желание модифицировать программу.
С помощью пайки установим датчики давления и газов.
Для установки платы Arduino Nano удобно использовать специальные адаптеры или гнёзда с шагом 2,54. Но за неимением этих деталей и из-за экономии пространства внутри корпуса, я установлю Ардуино также пайкой.
Термодатчик будет располагаться на некотором отдалении от платы и будет теплоизолирован от внутренностей метеостанции с помощью специальной изоляционной прокладки.
Предусмотрим места для подводки внешнего питания к нашей самодельной плате. Я буду использовать обычное зарядное устройство на 5 В от старого сломанного роутера. Плюс 5 вольт от зарядного устройства будут подаваться на пин Vin платы Arduino.
ЖК-экран будет крепиться винтами прямо к корпусу, к передней части. Подключаться будет проводами с разъёмами быстрого подключения типа "Dupont".

Изготовьте и установите на высоком шесте флюгер и расскажите детям, как определять направление ветра. Возьмите гладкую палку и вбейте в один из её концов длинный гвоздь. Вырежьте из плотного картона флажок и заламинируйте его, чтобы не промокал при дожде.

Край флажка оберните вокруг гвоздя так, чтобы он мог свободно вращаться при дуновении ветра. Сделайте из тонких проволочек стрелки, указывающие на юг, север, запад и восток и закрепите их на палке. Флюгер готов. Установите его на вашей метеоплощадке, сориентировав стрелки по сторонам света.

С детьми постарше (6–9 лет) изготовление флюгеров замечательно вписывается в уроки по географии, когда вы рассказываете, как образуются ветра, как использовали знания о них первые мореплаватели, что означают ветры на «конских широтах», что такое пассаты.

Моряки, зная о пассатах - устойчивых ветрах, дующих в тропических поясах, - называли их «торговыми ветрами», потому что с их помощью торговые корабли-парусники (тогда ещё не были изобретены двигатели) пересекали Атлантический океан. На парусниках везли товар из Европы в Америку.

Субтропические ветры между 30 и 38 параллелями южных и северных широт были настолько лёгкими, что парусники вставали в штиль. Приходилось месяцами ждать подходящего ветра. Часто ожидания затягивались на 3–5 месяцев. У моряков заканчивалась пресная вода и еда, и им приходилось питаться лошадьми, которых перевозили в больших количествах из Европы. Поэтому эти широты прозвали «конными».

Используя флюгер, дети отмечают в своих календариках наблюдения за погодой направление, силу и смену ветра. Таким образом мы не просто знакомим их с основными метеорологическими приборами, но и с методикой и техникой наблюдений и обработки результатов.

Термометр своими руками

Установите на метеоплощадке большой термометр и научите детей читать значения температур воздуха. Эта работа является также подготовкой для понимания концепции отрицательных чисел в математике, которая предлагается детям 9–12 лет в школе Монтессори.

Малыши 3–6 лет с удовольствием изготовят собственные термометры из картона и цветных ниток. Для этого:

  1. Посередине белой полоски картона шириной 4–6 см наносят шкалу термометра (выше и ниже нуля).
  2. Соединяют вместе красную и синюю (белую) нити.
  3. В верхнем и нижнем концах шкалы делают отверстия и пропускают через них концы ниток, связав их с обратной стороны.

Сверяясь с настоящим термометром, ребята двигают нить на своих самодельных градусниках, устанавливая и записывая значения температур в календарики погоды.

Гигрометр своими руками

Следующим прибором детской метеостанции является гигрометр - прибор для измерения влажности воздуха. Для его изготовления гигрометра понадобятся:

  • прямоугольный кусок деревянной дощечки или пенопласта;
  • две канцелярские кнопки;
  • скотч;
  • человеческий волос длиной около 10 см;
  • отрезок тонкой проволоки.

Укрепите на дощечке две кнопки на расстоянии примерно 8–10 см. К нижней прикрепите проволоку так, чтобы она могла приходить в движение, то есть нетуго. К верхней кнопке прикрепите кончик волоса, затем протяните его вокруг проволоки и закрепите на верхней кнопке. Прибор готов.

Расскажите детям, как человеческий волос реагирует на влажность воздуха, становясь короче или длиннее. При высокой влажности он удлинится, опустив таким образом стрелку вниз; при низкой влажности, наоборот, волос станет короче и поднимет проволочную стрелку вверх. Это свойство волоса и использовано для изготовления гигрометра.

Осадкомер своими руками

Дополнит вашу метеоплощадку осадкомер - прибор для измерения жидких и твёрдых осадков (града). Возьмите обычное ведро, установите его на небольшой возвышенности (тумбе, табурете). Накапливаемые осадки сливаются в мерный стакан со шкалой. Результаты дети заносят в свои календарики.

Метеостанция, построенная своими руками - это не только часть предметно-развивающей Монтессори-среды, но и увлекательная и познавательная возможность наблюдать за погодой и вести журнал наблюдений.

Обсуждая с детьми погоду, можно расширить тематику и рассказывать им о современных профессиях, зависящих от погодных условий. С детьми постарше (8–9 лет), в рамках Монтессори-программы по экономической географии, мы говорим о том, как климатические условия в целом влияют на экономику разных стран.