Схема фонаря с солнечной батареей. Изготовляем садовый фонарь на солнечной батарее своими руками

Если вы задумались об организации подсветки приусадебного участка, то не спешите покупать осветительные приборы в магазине. Садовые светильники на солнечных батареях можно сделать своими руками.

Если вы хотите осветить открытую территорию, а подводка электроснабжения к ней затруднена, то стоит подумать о светильниках на солнечных батареях, зарядка аккумуляторов которых происходит от лучей солнца. С наступлением темноты подобные приборы начинают работать, создавая комфортную обстановку на вашем приусадебном участке. Светильники просты в использовании и установке, а также привлекают вполне демократичными ценами на них и широким выбором.

Садовый светильник на солнечных батареях

Данная статья будет интересна тем, кто любит создавать полезные в хозяйстве вещи собственноручно. К преимуществам изготовления светильников «своими силами» можно с уверенностью отнести то, что ваша модель будет эксклюзивна и вполне надежна (ведь вы ее сделали сами). При этом помните: осуществить значительную экономию денежных средств вряд ли удастся. Мы не будем приводить описание дорогостоящих схем с использованием готовых контроллеров, а остановимся лишь на наиболее простом варианте. Повторить его сможет, практически, любой человек, хоть раз державший в руках паяльник.

Принципиальная схема простого для повторения светильника

Приведенная ниже принципиальная схема светильника, работающего от энергии солнечного света весьма проста, и многократно опробована многочисленными любителями, специализирующихся на изготовлении полезных устройств своими руками.


Принципиальная схема

Как она работает:

  • В дневное время солнечная панель (S) преобразует энергию световых лучей в электрическую.
  • Вырабатываемый ею ток через диод D1 заряжает аккумуляторную батарею (А).
  • Положительный потенциал, приложенный к базе через резистор R1, «удерживает» транзистор Т1 в закрытом состоянии и светодиод D2 не горит.
  • При значительном снижении освещенности солнечной панели транзистор открывается (из-за уменьшения положительного потенциала, приложенного к базе) и подключает светодиод D2 к аккумуляторной батарее. Светодиод начинает гореть.
  • Диод D1 препятствует разряду аккумулятора через солнечную панель.
  • С наступлением рассвета положительное напряжение, поступающее с «+» вывода солнечной панели на базу «закрывает» транзистор Т1 и светодиод D2 перестает гореть, а аккумуляторная батарея снова начинает заряжаться.


Критерии выбора деталей и цены

Выбор деталей зависит от того, насколько мощный светильник вы намереваетесь изготовить. Приводим конкретные номиналы для самодельного осветительного прибора мощностью 1 Вт и интенсивностью светового потока 110 Лм.

Так как в вышеприведенной схеме отсутствуют элементы контроля уровня заряда аккумуляторной батареи, то, прежде всего, необходимо обратить внимание на выбор солнечной батареи. Если выбрать панель со слишком маленьким током, то за световой день она просто не успеет зарядить аккумулятор до нужной емкости. И наоборот слишком мощная световая панель может перезарядить батарею за время светового дня и привести ее в негодность.

Вывод: ток, вырабатываемый панелью, и емкость аккумулятора должны соответствовать друг другу. Для грубого расчета можно воспользоваться соотношением 1:10. В нашем конкретном изделии мы используем солнечную панель с напряжением 5 В и вырабатываемым током 150 мА (120-150 рублей) и аккумуляторную батарею форм-фактора 18650 (напряжением 3,7 В; емкостью 1500 мАч; стоимостью 100-120 рублей).


Также для изготовления нам понадобятся:

  • Диод Шоттки 1N5818 с максимальным допустимым прямым током 1 А – 6-7 рублей. Выбор именно этой разновидности выпрямительной детали обусловлен низким падением напряжения на нем (около 0,5 В). Это позволит использовать солнечную панель наиболее эффективно.
  • Транзистор 2N2907 с максимальным током коллектор-эмиттер до 600 мА – 4-5 рублей.
  • Мощный белый светодиод TDS-P001L4U15 (интенсивность светового потока – 110 Лм; мощность – 1 Вт; рабочее напряжение – 3,7 В; потребляемый ток – 350 мА) – 70-75 рублей.

Важно! Рабочий ток светодиода D2 (или суммарный общий ток при использовании нескольких излучателей) должен быть меньше максимального допустимого тока коллектор-эмиттер транзистора T1. Это условие с запасом выполняется для примененных в схеме деталей: I(D2)=350 мА < Iкэ(Т1)=600 мА. Батарейный отсек KLS5-18650-L (FC1-5216) – 45-50 рублей. Если при монтаже устройства аккуратно припаять провода к выводам аккумулятора, от покупки этого элемента конструкции можно отказаться.

  • Резистор R1 номиналом 39-51 кОм – 2-3 рубля.
  • Добавочный резистор R2 рассчитываем в соответствии с характеристиками применяемого светодиода.

Назначение и расчет добавочного резистора в цепи питания светодиода

Напряжение аккумулятора может быть слишком большим для светодиода (это может привести к выходу из строя последнего). Чтобы компенсировать его излишки используем добавочный резистор R2. Расчет его номинала производим исходя из формулы: U(A) = U(D2) + U(R2), где:

U(A) – напряжение аккумуляторной батареи;

U(D2) – рабочее напряжение светодиода;

U(R2) – падение напряжения на добавочном резисторе R2.

Для используемого в приведенной выше схеме светодиода TDS-P001L4U15 с рабочим напряжением 3,7 В применение резистора R2 не требуется, так как U(A) = U(D2). То есть наша конкретная схема будет выглядеть следующим образом:


В качестве примера расчета добавочных резисторов рассмотрим схему с подключением двух разнотипных светодиодов: D2 – BL-L813UWC (рабочее напряжение – 2,7 В; потребляемый ток – 30 мА; стоимость – 15 рублей) и D3 – FYL-5013UWC/P (2,2 В; 25 мА; 20 рублей).


Рассчитываем добавочный резистор R2 для светодиода D2.

U(A) = U(D2) + U(R2)

U(R2) = U(A) – U(D2) = 3,7 – 2,7 = 1 В

По закону Ома (знакомого всем со школьной скамьи):

U(R2) = R2 I, где I – потребляемый светодиодом ток, следовательно

R2 = U(R2) : I = 1: 0,03 = 33,33 ≈ 33 Ом

Аналогично рассчитываем добавочный резистор R3 для светодиода D3:

U(R3) = U(A) – U(D3) = 3,7 – 2,2 = 1,5 В

R3 = U(R3) : I = 1,5: 0,025 = 60 ≈ 62 Ом

На заметку! После произведенных расчетов величины добавочных резисторов округляем полученные значения до ближайших стандартных номиналов.

Окончательно схема с двумя разнотипными излучателями будет выглядеть следующим образом:


Монтаж

Схема состоит из минимального количества элементов, поэтому монтаж можно без труда осуществить навесным способом. Длины «ножек» деталей будет вполне достаточно, чтобы произвести пайку без применения дополнительных проводов. После окончания монтажа и проверки работоспособности изготовленного светильника все места соединений следует заизолировать с помощью теплового карандаша или соответствующего герметика.

Для тех, кто предпочитает монтировать компоненты на печатной плате, могут сделать это, используя универсальную монтажную плату подходящих размеров или изготовленную самостоятельно.

Из чего изготовить плафон?

Прежде, чем рассказать, какие формы можно использовать при изготовлении плафона, напомним о требованиях, которые необходимо соблюдать при самостоятельном изготовлении корпуса светильника:

Солнечная панель должна быть расположена снаружи на верхней части изделия, чтобы она хорошо освещалась в дневное время.

Все стыковочные швы между элементами конструкции надо тщательно герметизировать (компоненты схемы боятся влаги).

Светодиоды необходимо располагать в прозрачной части плафона.
В остальном все будет зависеть только от вашей фантазии, личных предпочтений и имеющихся в наличии подручных материалов. Одним из наиболее простых вариантов является применение в качестве плафона стеклянной банки (например, для хранения сыпучих продуктов) с широким горлышком и плотной крышкой:

  • делаем отверстие в крышке и пропускаем через него провода от солнечной панели;
  • фиксируем на внешней стороне солнечную панель с помощью герметика;
  • на внутренней поверхности монтируем батарейный отсек и элементы схемы;
  • светодиоды располагаем в нижней части банки.


В качестве практически готового корпуса можно с успехом использовать пищевой контейнер из прозрачного пластика. В продаже имеется большое количество таких изделий различных размеров и форм (круглые, квадратные, прямоугольные). Выбор будет зависеть от размеров солнечной панели и количества светодиодов.


В заключении

Повторив простейшую схему и приобретя необходимый опыт изготовления, вы сможете изготовить необходимое количество самых разнообразных самодельных светильников на солнечных батареях. Такие экономичные и мобильные осветительные приборы не только украсят ваш приусадебный участок, но и в значительной мере повысят комфорт его использования в темное время суток (например, если расположить их вдоль садовых дорожек, над входной дверью или у летней беседки).

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Устройство садового светильника на солнечной батарее довольно простое, если не сказать примитивное. Стандартный фонарь для сада состоит из пяти ключевых компонентов:

  • солнечная батарея;
  • аккумулятор;
  • источник света (светодиод, LED-матрица);
  • механизм включения (датчик освещенности, звука, движения и т.д.);
  • крепежная часть.

Работает всё так: в дневное время солнечный свет попадает на солнечную батарею, которая является связкой из нескольких фотоэлементов, преобразующих солнечную энергию в постоянный электрический ток. Этот ток аккумулируется в накопителе, которым является аккумуляторная батарея (в светильниках для сада чаще всего используются батарейки типа АА). В ночное время суток ток подаётся на светодиод (-ы) или LED-матрицу и мы получаем свет.

В большинстве случае за всем этим следит автоматический включатель, фотоэлемент, который замыкает цепь при низком уровне освещенности. В качестве включателя может выступать и другой датчик, к примеру, датчик движения или звука, а также простая механическая кнопка для ручного включения.

На данной схеме хорошо показан принцип устройства среднестатистического фонаря на солнечной батарее и как он работает:

Вроде не сложно, но звучит на миллион. Солнечная энергия это дорого?

Солнечная энергия это бесплатно, а вот оборудование, необходимое для её использования может стоить больших денег. Впрочем, самые простые садовые фонари с солнечной панелью можно купить за смешные деньги, что-то около $1-3. Да, как осветительные приборы они не годятся, но обозначить тропинку, к примеру, или границы участка с ними можно. Есть, конечно, экземпляры и подороже, оснащенные датчиками движения или звука, вынесенными отдельно солнечными панелями и т.д. и т.п. Но даже самые дорогие садовые фонари окупятся стократ за достаточно короткий период, ведь солнечная энергия БЕСПЛАТНАЯ!

А помимо экономии на электроэнергии есть вообще преимущества?

О, их очень много. Перечислим только самые очевидные из них:

  • отсутствие необходимости в использовании кабеля даёт свободу действия по выбору места для установки фонаря (даже на затененном участке вашего сада, если использовать выносную солнечную панель);
  • простой и понятный монтаж;
  • огромный срок службы (до 15-20 лет, при условии правильной эксплуатации и своевременной замене аккумуляторов);
  • огромный ассортимент, включая декоративные светильники, как для сада, так и для водных объектов;
  • экологичность.

Понятно. А как лучше установить садовые фонари на даче и вообще использовать их?

Автономные комплекты освещения просты в установке, а область их использования очень широка. Давайте рассмотрим несколько способов использования светильников с солнечной батареей для благоустройства вашей территории.

Огни безопасности

Вы можете использовать различные комбинации светильников с солнечной энергией для освещения дорожек, лестниц, краёв ландшафтных сооружений и архитектурных форм. Для этого подходят газонные (привычный фонарь на ножке), настенные и точечные фонари. Оснащенные фотоэлементами они будут освещать препятствия на вашем участке всю ночь и обеспечат безопасное передвижение по нему. Более эффективным получится система освещения с использованием датчиков движения. Начните с бюджетных газонных фонарей по краю тропинки и вы поймете, насколько это удобно.

Охранные огни

Мощные прожекторы с датчиком движения помогут наладить освещение в затемненных местах, таких как крыльцо или флигель, обезопасив вас и ваше имущество. Такие прожекторы стоят гораздо дороже обычных садовых фонарей, но и света они дают намного больше. Их оснащают мощной солнечной панелью, которая часто закрепляется отдельно от прожектора на солнечной стороне и передаёт энергию прибору через кабель.

Декоративные огни

Украсьте свой ландшафт акцентными точечными светильниками. В основном это делается мощными прожекторами, если нужно подсветить высокое дерево или часть фасада здания, а также небольшими точечными фонарями, если нужно сделать акцент на небольших кустиках в вазонах. Есть также оригинальные подвесные светильники с установленной в них солнечной батареей – они найдут своё место на ветвях любимого дерева.

А что мне делать, если я не могу установить фонари там, где много солнечного света?

Многие ошибочно полагают, что они могут использовать солнечные батареи только там, где много солнечного света, постоянно хорошая погода и ни как иначе. В последние годы технологии шагнули далеко вперёд, солнечные батареи сильно прибавили в КПД, а повсеместное использование светодиодов значительно сократило потребление электроэнергии. Просто не ставьте фонари там, где они постоянно будут находиться в тени, старайтесь направлять солнечную панель к югу и регулярно следите за чистотой фотоэлементов.

Как выбрать светильник на солнечных батареях? Есть нюансы?

Кроме очевидных моментов, таких как внешний вид изделия, аккуратность сборки, прочность материалов, длительность работы от одного заряда и прочего, следует обратить внимание на особенности светильника, исходя из эксплуатационных требований к нему.

Степень защиты

Прежде всего, обратите внимание на степень защиты, а именно на маркировку IPXX, где первая цифра обозначает степень защиты от проникновения твёрдых предметов, в том числе пыли, а вторая – от проникновения влаги. Не забывайте, что садовые фонари будут эксплуатироваться в достаточно экстремальных условиях, поэтому защита внутренней начинки фонаря должна быть на должно уровне. Обычно светильники для наружного применения имеют минимальную степень защиты IP44. Это значит, что изделие защищено от попадания внутрь посторонних предметов, имеющих диаметр около 1 мм, а также брызг воды со всех сторон. От пыли и сильного ливня изделие, как вы понимаете, не защищено.

Таблицы расшифровки степени защиты (IP) в соответствии с международным стандартом IEC 60529 (DIN 40050, ГОСТ 14254)

Степень защиты от твёрдых предметов (жми для увеличения)

Степень защиты от воды (жми для увеличения)

Тип накопителя

В большинстве случаев садовые фонари оснащают никель-кадмиевым (NiCd) или никель-металл-гидридными (Ni-MH) аккумуляторными батарейками типа АА. Второй тип аккумулятор предпочтительней, так как имеет в среднем в 2 раза большую ёмкость (NiCd: 500-900 мАч, Ni-MH: 1000-2000 мАч), более экологичный и надёжный (выдерживают экстремальные температуры, не имеют эффекта памяти и т.д.). Стоит отметить, что сейчас большинство производителей уличных фонарей на солнечных батареях оснащают свои изделия именно Ni-MH аккумуляторами. Даже если вам попались светильниками с NiCd на борту, берите их смело, если они устраивают вас по остальным параметром, ведь батарейки всегда можно будет заменить на свои.

Тип фотоэлемента солнечной панели

Если есть возможность, обратите внимание на вид используемых фотоэлементов солнечной батареи. Даже не вид или тип, а подвид, так как в большинстве случаев садовые светильники оснащают кремниевыми кристаллическими фотомодулями. Кремний, в свою очередь, может имеют разную структуру, что подразделяет фотоэлементы из кремния на монокристаллические, поликристаллические и элементы из аморфного кремния. Наивысший КПД у монокристаллического кремния и составляет 15-20%, чуть меньше у поликристаллического – 10-14%, меньше всего у аморфного кремния – всего 5-6%. Также элементы имеют свойство деградировать, то есть терять мощность с годами. Аморфный кремний подвержен деградации больше остальных, поэтому старайтесь избегать панелей из этого материала.

Также следует обратить внимание на тип включателя. В большинстве случаев фонари оснащаются фотореле, которое включает свет только тогда, когда на улице потемнело. Такие фонари рассчитаны на то, чтобы гореть всю ночь и освещать, к примеру, дорожки на вашем участке. Есть также светильники, оснащенные датчиками движения – они идеально подходят для подсветки ступеней, дверей и т.д. Такие фонари экономней потребляют энергию, светят только тогда, когда это нужно, а также могут выполнять охранную функцию.

Слышал, они часто ломаются, а ремонту подлежат?

Ломаются они не чаще любого другого светильника, а уход и профилактика нужны в любом случае, однако в эксплуатации садовые фонари не очень требовательны. Регулярно протирайте солнечную панель влажной тканью, чтобы грязь не препятствовала прохождению солнечного света. Чаще всего выходят их строя именно аккумуляторы, особенно если это NiCd. Произвести замену элементарно. В сезон, когда фонари использовать не планируете, аккумуляторы обязательно доставайте и храните отдельно, соблюдая рекомендации по хранению того или иного вида накопителя. Иногда окисляются контакты, особенно если степень защиты у фонаря всего IP44, а он регулярно попадал под сильный дождь и влага, в итоге, попала внутрь изделия. Отремонтировать фонарь достаточно просто, если у вас есть хотя бы начальные технические навыки, и вы понимаете фразу «зачистить контакты полюсов аккумулятора и контейнера питания».

Если вы увлекаетесь техникой и электроникой, садовый фонарь на солнечной батарее можно и доделать, усовершенствовать. Часто в самые не дорогие модели, которые включаются только с кнопки, ставят фотореле. Иногда вместо обычного диода ставят RGB. Здесь полагаемся на вашу фантазию и умение пользоваться Google-ом (рекомендуем заглянуть на YouTube с этим вопросом).


В прошлой статье уже рассказывалось о том, как сделать солнечную панель из старых садовых светильников. Так как мощность солнечных элементов используемых в них не столь велика, то для создания панели средней мощности требуется достаточно большое количество элементов. После сборки солнечной панели, у автора осталось еще несколько садовых светильников, но для еще одной солнечной панели их недостаточно. Поэтому автор решил сделать зарядное устройство на основе солнечных элементов, используемых в садовых светильниках.

Материалы, которые использовал автор для создания зарядного устройства на солнечной энергии:
1) отрезок листа фанеры
2) садовые фонари 4 штуки
3) диод Шоттки
4) паяльник и необходимые расходники
5) аккумуляторные батарейки АА или ААА.

Рассмотрим основные этапы создания и сборки данного зарядного устройства.
Для начала автор рассчитал примерное количество солнечных элементов от светильников исходя из их мощности и мощности необходимой для питания аккумуляторных батарей. В итоге для создания зарядного устройство необходимо как минимум четыре садовых светильника.


После этого автор приступил к разборке садовых фонарей, чтобы достать из них солнечные элементы. Так же можно использовать имеющиеся держатели для аккумуляторов, а вот плата и светодиод в данной конструкции не пригодятся.

При желании можно аккуратно отделить солнечные элементы от крышки садового светильника, так как элементы покрыты специальной смолой, то они достаточно крепкие и при должном подходе останутся целыми. После чего поместить эти элементы в пластиковый корпус. Однако проводить подобную процедуру стоит только если вам необходим красивый внешний вид изделия, в ином случае допустимо использование элементов вместе с крышками. Автор не стал добавлять себе работы и просто прикрепил четыре солнечные элемента вместе с крышками на лист фанеры. После этого автор стал соединять элементы в одну конструкцию.

Ниже приведена схема подключения солнечной батареи, которая будет питать аккумуляторы:


Как видно из схемы, соединяются все элементы параллельно. Для того, чтобы аккумуляторы не разряжались через солнечные элементы при слабой освещенности, автор установил в разрыв между солнечными элементами и аккумуляторами диод Шоттки. Благодаря этому диоду зарядное устройство будет накапливать энергию на солнце, а в темное время суток успешно ее сохранять.


В итоге получилось такое зарядное устройство из 4 солнечных элементов от садовых светильников, которые питают аккумуляторные батареи.

Автономный садовый светильник может служить не только украшением садовой дорожки. Это устройство создает уют и достаточно эффективно освещает приусадебную территорию, избавляя от необходимости расходовать электроэнергию. Можно сэкономить и на его приобретении: светильник на солнечных батареях своими руками соберет даже школьник, немного знакомый с основами электроники и электротехники.
В 1998 году началось производство светодиодов, излучающих яркий белый свет, что позволило значительно увеличить эффективность светильников, основу конструкции которых составляет аккумуляторная батарея и солнечная панель. Аккумулятор придется приобрести в радиомагазине, его емкость должна быть не ниже 1500 мАч при 3,7 В на клеммах. Он полностью зарядится за 8 часов. Так же следует присмотреть и солнечную панель с параметрами 5,5 В/200 мА.

Светильник на солнечных батареях своими руками можно собрать по следующей схеме:

Элементная база состоит из таких элементов:

  • резистор 47 – 56 Ом (для ограничения тока);
  • резистор 47 – 56 кОм (выбор зависит от типа используемого транзистора);
  • диод отечественного производства КД243А либо импортный аналог 1N4001/7/ 1N4148;
  • отечественный транзистор КТ361Г или импортный 2N3906.

Диод и Транзисторы выглядят следующим образом:

Для сборки схемы потребуется печатная плата такой конфигурации (ее можно вытравить самостоятельно):

Светодиодные лампы следует использовать мощностью 3 Вт: такой источник будет давать достаточную освещенность. Можно установить несколько штук меньшей мощности (от 1 до 1,5 Вт).

В качестве корпуса для аккумулятора и электронной схемы можно использовать колпачок от дезодоранта. Сверху на него с помощью термоклея крепится солнечная панель. Отражателем может служить лазерный компакт-диск. Собранный светильник будет выглядеть следующим образом:

Собранный своими руками светильник на СБ будет автоматически включаться с наступлением темноты и отключаться утром. Затраты на изготовление будут в 2,5 – 3 раза меньшими стоимости готового изделия, а если светильников должно быть несколько – экономия становится более существенной. Хотя если быть откровенным, то стоимость садового светильника на солнечных батареях не высока. Мастерят светильник на солнечных батареях своими руками скорей не ради выгоды, а ради удовольствия.

В том случае, если автономный светильник уже приобретен, но его декоративные качества оставляют желать лучшего, можно улучшить его характеристики. В светильник на солнечных батареях своими руками вместо белых ламп можно вставить цветные (они бывают зелеными, синими, желтыми, красными различных оттенков), соблюдая полярность. Может возникнуть проблема: садовый светильник через час-полтора станет гореть тускло и затем погаснет.

Чтобы исправить ситуацию необходимо внести изменения в схему, добавив в цепь последовательно сопротивление номиналом несколько десятков Ом. Для этого требуется перерезать дорожку на плате и впаять в разрыв резистор.

Выбор резистора осуществляется по току: его значение должно быть около 5 мА. Такого тока достаточно для того, чтобы светильник работал несколько часов даже от аккумуляторной батареи вдвое меньшей емкости.

Аккумулятор лучше использовать типа Ni-MH («пальчиковый» АА или ААА): он дешевле Ni-Cd акуумулятора, срок службы которого редко превышает 1 год. Это оправдывается еще и тем, что светлого времени суток все равно не достаточно для того, чтобы зарядить на 100% аккумуллятор 3000 мАч емкости.

Такие светильники, изготовленные или доработанные своими силами, можно устанавливать на дорожках в саду, возле въездных ворот или на крылечке дома.

Доброго дня уважаемые Радиолюбители!
Вот уже почти как месяц на сайте открыт раздел “От читателей “. Честно говоря, я уже стал думать, что эта моя задумка не удалась – откликов читателей на предложение не было. А сегодня утром, просматривая почту сайта, я был приятно удивлен, обнаружив письмо с предложением публикации статьи. Но еще больше я был удивлен, да даже можно прямо сказать – поражен, когда увидел кто автор статьи.
Итак уважаемые Радиолюбители, сегодня, в разделе “От читателей”, я с большим удовольствием и почтением представляю вам статью автора множества интересных и познавательных публикаций и книг – Юрия Всеволодовича Ревича :

Доработка садовых светильников на солнечных батареях

Несколько лет назад в крупных супермаркетах («Ашане», «Леруа-Мерлене») появились на удивление дешевые (по цене меньше ста рублей) садовые светильники на светодиодах и со встроенной солнечной батареей для подзарядки днем. Через некоторое время они появились практически во всех торговых точках, торгующих электрикой или товарами для сада и огорода. Выглядит светильник примерно так, как показано на рисунке:

Хорошее начинание, однако, оказалось несколько подпорчено тем, что яркости маленького светодиода не хватает для того, чтобы что-то осветить всерьез, потому светильник скорее выполняет декоративные функции и быстро надоедает своим мертвенным белым свечением. Кроме того, в реальных световых условиях мощности солнечной батареи не хватает для нормальной подзарядки аккумулятора – светильник горит часа два-три после захода солнца и затем «умирает».

Есть, однако, простой способ исправить сразу оба недостатка, и превратить изделие из одноразовой игрушки в красивый и функциональный элемент садового ландшафта. Разумеется, превратить его в полноценный осветительный прибор невозможно, но легко значительно повысить декоративные качества светильника, если заменить светодиоды на цветные. Последних имеется в продаже множество различных цветов (не только белые-красные-желтые-зеленые-синие, но и разных оттенков – например, зеленые бывают не только просто зеленые, но и желто-зеленые и голубовато-зеленые, а желтые – и густо-желтые и лимонные). Все они, и обычные, и повышенной яркости, любого размера и геометрии могут работать в этих светильниках без доработки (за исключением специальных мощных осветительных и еще мигающих светодиодов, которые сами представляют собой законченную схему). При замене только следите за полярностью светодиода, и практически больше ничего не требуется. Светильники спокойно работают и зимой при небольших морозах, но при сильном похолодании их лучше убрать в помещение, вытащив аккумулятор.

Однако, вторая проблема при этом может даже усугубляться: малое падение напряжения на цветном светодиоде заставит его гореть очень ярко, но даже летом всего полчаса-час. Это особенно мешает осенью и зимой, когда световой день сокращается, а пасмурная погода приводит к тому, что накопленного за день заряда аккумулятора хватает лишь на пару минут.

Этот недостаток исправить тоже несложно, если подключить последовательно со светодиодом резистор номиналом в несколько десятков ом. Следует острым резаком разорвать дорожку на плате, ведущую от микросхемы к светодиоду и установить резистор вместо нее (на рисунке ниже показана переделка платы светильника из «Леруа-Мерлена», в других случаях плата может выглядеть иначе):

Подбор резистора следует осуществлять таким образом, чтобы ток через него составлял 4-6 мА – этого достаточно для нормальной яркости свечения, а при полной зарядке штатного Ni-Cd акуумулятора в 600 мА-ч светильник будет тогда работать несколько суток (на практике полная зарядка, конечно, не достигается).

На выходе микросхемы светильника имеет грубый источник тока с напряжением на холостом ходу порядка 2,5 В – то есть примерно равном удвоенному напряжению аккумулятора. При подключении нагрузки это напряжение падает, и резистор необходимо подобрать так, чтобы падение напряжения на нем соответствовало выбранному току. Например, для красного светодиода номинал может составить 75-91 Ом (падение напряжения на резисторе 0,4-0,5 В), для зеленого повышенной яркости – от 47 до 62 Ом (падение напряжения 0,2-0,3 В) и т.д.

Кстати, обычно штатного Ni-Cd акуумулятора хватает не более, чем на год, потом он выходит из строя. Опыт показал, что в светильник можно установить обычный пальчиковый Ni-MH аккумулятор, причем чем дешевле (то есть чем меньше его емкость), тем лучше – имеющейся солнечной батареи все равно не хватит, чтобы зарядить полностью аккумулятор с емкостью 2000-3000 мА-ч, и он в любом случае будет работать лишь на небольшую часть от своих возможностей.

Для тех кто (по молодости лет) незнаком с Ю.В. Ревичем:

Инженер и журналист с многолетним стажем. Основной круг интересов – информационные технологии, их влияние на современное общество, технологические инновации, история компьютеров и технологических инноваций. Регулярно публикуется в журналах, газетах и сетевых изданиях. Автор 6 популярных книг, среди которых “Занимательная электроника”, “Самоучитель работы на ПК для всех”, “Практическое программирование микроконтроллеров Atmel AVR на языке ассемблера” и др.